

DG646BH25

Gate Turn-off Thyristor

DS4092-5 July 2014 (LN31756)

FEATURES

- Double Side Cooling
- High Reliability In Service
- High Voltage Capability
- Fault Protection Without Fuses
- High Surge Current Capability
- Turn-off Capability Allows Reduction in Equipment Size and Weight. Low Noise Emission Reduces Acoustic Cladding Necessary For Environmental Requirements

APPLICATIONS

- Variable speed AC motor drive inverters (VSD-AC)
- Uninterruptable Power Supplies
- High Voltage Converters
- Choppers
- Welding
- Induction Heating
- DC/DC Converters

KEY PARAMETERS

2500V
867A
2500A
1000V/µs
300A/µs

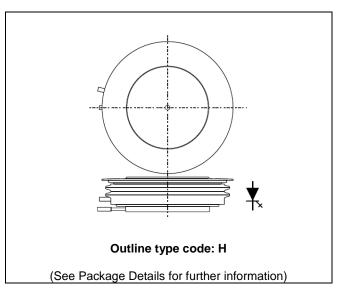


Fig. 1 Package outline

VOLTAGE RATINGS

Type Number	Repetitive Peak Off-state Voltage V _{DRM} (V)	Repetitive Peak Reverse Voltage V _{RRM} (V)	Conditions
DG646BH25	2500	16	$T_{vj} = 125$ °C, $I_{DM} = 50$ mA, $I_{RRM} = 50$ mA

CURRENT RATINGS

Symbol	Parameter	Conditions	Max.	Units
I _{TCM}	Repetitive peak controllable on-state current	$V_D = V_{DRM}, T_j = 125^{\circ}C,$ $dI_{GQ}/dt = 40A/\mu s, C_S = 6.0 \ \mu F$	2500	А
I _{T(AV)}	Mean on-state current	T_{HS} = 80°C, Double side cooled. Half sine 50Hz	867	А
I _{T(RMS)}	RMS on-state current	T_{HS} = 80°C, Double side cooled. Half sine 50Hz	1360	А

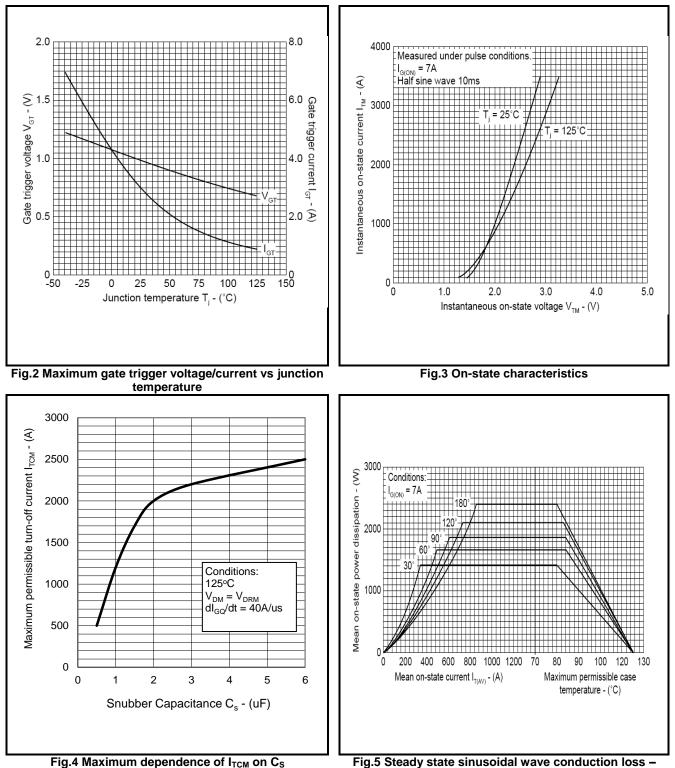
SURGE RATINGS

Symbol	Parameter	Test Conditions	Max.	Units
I _{TSM}	Surge (non repetitive) on-state current	10ms half sine. $T_j = 125^{\circ}C$	18.0	kA
l ² t	I ² t for fusing	10ms half sine. $T_j = 125^{\circ}C$	1.62	MA ² s
di⊤/dt	Critical rate of rise of on-state current	V_D = 1500V, I _T = 2000A, T _j = 125°C, I _{FG} > 30A, Rise time > 1.0 µs	300	A/µs
-1) (/-1)		To 66% V_{DRM} ; $R_{GK} \le 1.5\Omega$, $T_j = 125^{\circ}C$	135	V/µs
dV _D /dt	Rate of rise of off-state voltage	To 66% V _{DRM} ; $V_{RG} \leq -2V$, $T_j = 125^{\circ}C$	1000	V/µs
Ls	Peak stray inductance in snubber circuit	I_T = 2000A, V_{DM} = 2500V, T_j = 125°C, di_{GQ}/dt = 40A/µs, C_S = 2.0µF	200	nH

GATE RATINGS

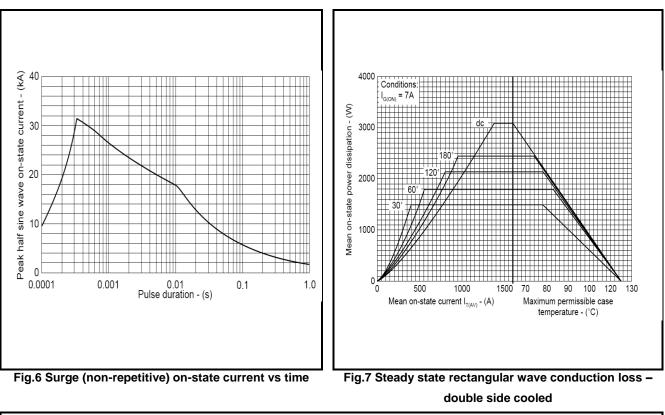
Symbol	Parameter	Test Conditions	Min.	Max.	Units
V _{RGM}	Peak reverse gate voltage	This value may be exceeded during turn-off	-	16	V
I _{FGM}	Peak forward gate current		20	100	А
P _{FG(AV)}	Average forward gate power		-	15	W
P _{RGM}	Peak reverse gate power		-	19	kW
di _{GQ} /dt	Rate of rise of reverse gate current		30	60	A/µs
t _{ON(min)}	Minimum permissible on time	1	50	-	μS
t _{OFF(min)}	Minimum permissible off time		100	-	μS

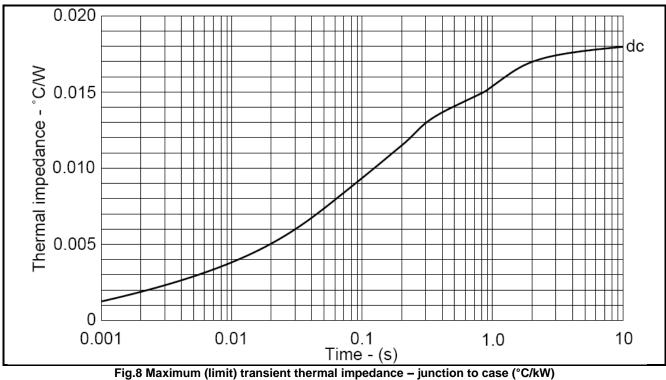
THERMAL AND MECHANICAL RATINGS


Symbol	Parameter	Test Condition	S	Min.	Max.	Units
	Thermal resistance – junction to	Double side cooled	DC	-	0.018	°C/W
R _{th(j-hs)}	heatsink surface		Anode DC	-	0.03	°C/W
		Single side cooled	Cathode DC	-	0.045	°C/W
$R_{th(c-hs)}$	Contact thermal resistance	Clamping force 20.0kN With mounting compound	Per contact	-	0.006	°C/W
T_{vj}	Virtual junction temperature	On-state (conducting)		-	125	°C
T _{OP} /T _{stg}	Operating junction/storage temperature range			-40	125	°C
F _m	Clamping force			18.0	22.0	kN

CHARACTERISTICS

T_j = 125°C unless stated otherwise


Symbol	Parameter	Test Conditions	Min	Max.	Units
V_{TM}	On-state voltage	At 2000A peak, I _{G(ON)} = 7A dc	-	2.6	V
I _{DM}	Peak off-state current	$V_{DRM} = 2500V, V_{RG} = 0V$	-	100	mA
I _{RRM}	Peak reverse current	At V _{RRM}	-	50	mA
V_{GT}	Gate trigger voltage	$V_D = 24V, I_T = 100A, T_j = 25^{\circ}C$	-	1.0	V
I _{GT}	Gate trigger current	$V_D = 24V, I_T = 100A, T_j = 25^{\circ}C$	-	3.0	А
I _{RGM}	Reverse gate cathode current	V _{RGM} = 16V, No gate/cathode resistor	-	50	mA
Eon	Turn-on energy			1188	mJ
t _d	Delay time	$V_D = 1500V$ I _T = 2000A, dI _T /dt = 300A/µs	-	1.2	μS
tr	Rise time	- I _{FG} = 30A, rise time < 1.0µs		3.0	μS
E _{OFF}	Turn-off energy		-	4000	mJ
t _{gs}	Storage time		-	17.0	μS
t _{gf}	Fall time	$I_T = 2000A,$	-	2.0	μS
t _{gq}	Gate controlled turn-off time	$V_{DM} = 2500V,$ Snubber capacitor C _S = 2.0µF,	-	19.0	μS
Q_{GQ}	Turn-off gate charge		-	6600	μC
Q_{GQT}	Total turn-off gate charge	- di _{GQ} /dt = 40A/µs		13200	μC
I _{GQM}	Peak reverse gate current		-	650	А



double side cooled

🌘 🕸 YN EX

DG646BH25

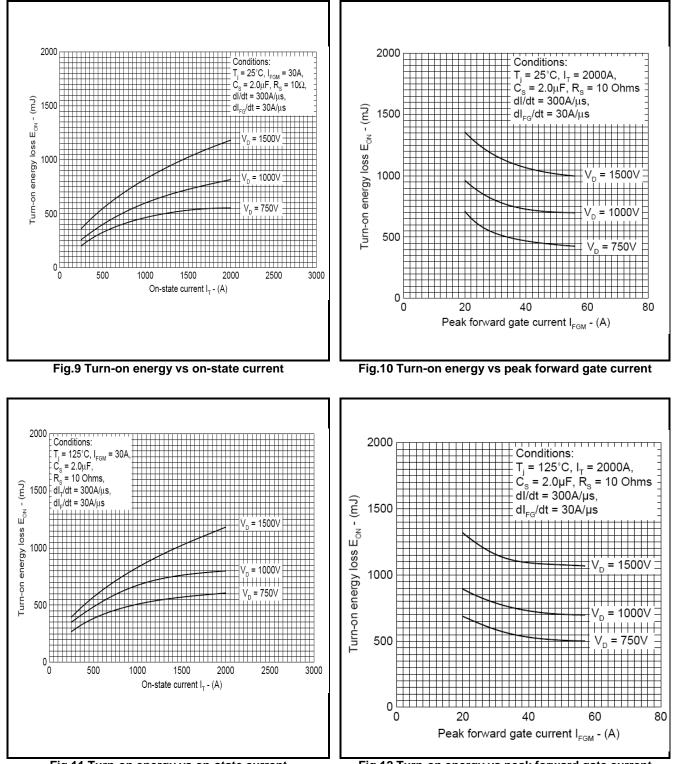


Fig.11 Turn-on energy vs on-state current

Fig.12 Turn-on energy vs peak forward gate current

DG646BH25 ©₩YNCX 2000 1111 Conditions: I_T = 2000A, $\label{eq:conditions: T_1 = 125°C, I_{FGM} = 30A, \\ C_{S} = 2.0 \mu F, V_{D} = 1500V, \\ R_{S} = 10\Omega, \, dI_{T}/dt = 300A/\mu s, \, dI_{F}/dt = 30A/\mu s. \\ \end{tabular}$ 4.0 T_j = 125°C, C_s = 2.0μF Γurn-on energy loss E_{oN} - (mJ) 1500 E R_s = 10 Ohms Turn-on delay and rise time - (µs) I_{FGM} = 30A, dI_{FG}/dt = 30A/μs 3.0 V_D = 1500∨ 1000 2.0 VD = 1000V td 1.0 500 = 750V 0 500 1000 1500 2000 2500 3000 0 On-state current $I_{T} - (A)$ 0 100 200 0 300 Rate of rise of on-state current dI_T/dt - (A/µs) Fig.13 Turn-on energy vs rate of rise of on-state current Fig.14 Delay time & rise time vs turn-on current 5.0 $I_{s} = 2.5.$ $R_{s} = 10 \text{ Ohn.}$ $dI_{re}/dt = 30A/\mu s,$ $dI_{re}/dt = 30A/\mu s,$ $V_{o} = 1500V$ Conditions: T₁ = 125°C, I₁ = 2000A, 2500 Conditions: T_j = 25°C, C_s = 2.0μF 4.0 Turn-on delay time and rise time - (µs) dl_{oq}/dt = 40A/µs 2000 0.75x V Turn-off energy loss E_{oFF} - (mJ) 3.0 🕇 1500 0.5x 2.0 1000 1.0 500

 0
 20
 40
 60
 80

 Peak forward gate current I_{FGM} - (A)

current

Fig.16 Turn-off energy vs on-state current

1500

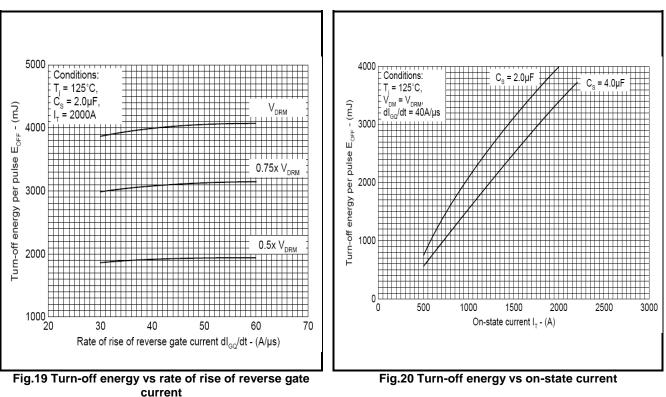
On-state current I_T - (A)

2000

2500

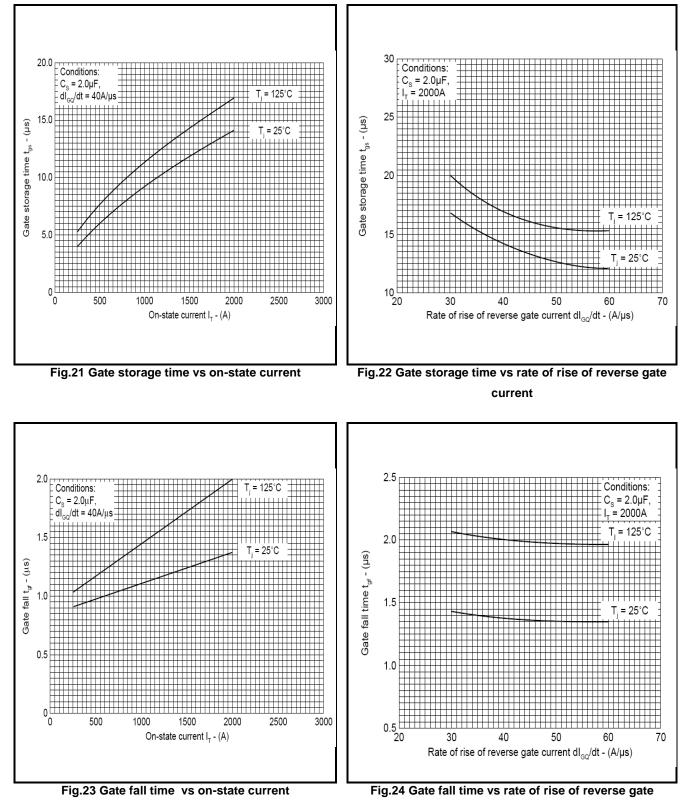
+++++++


1000


0

500

3000



🙆 🏵 YN EX

DG646BH25

current

) & YNex

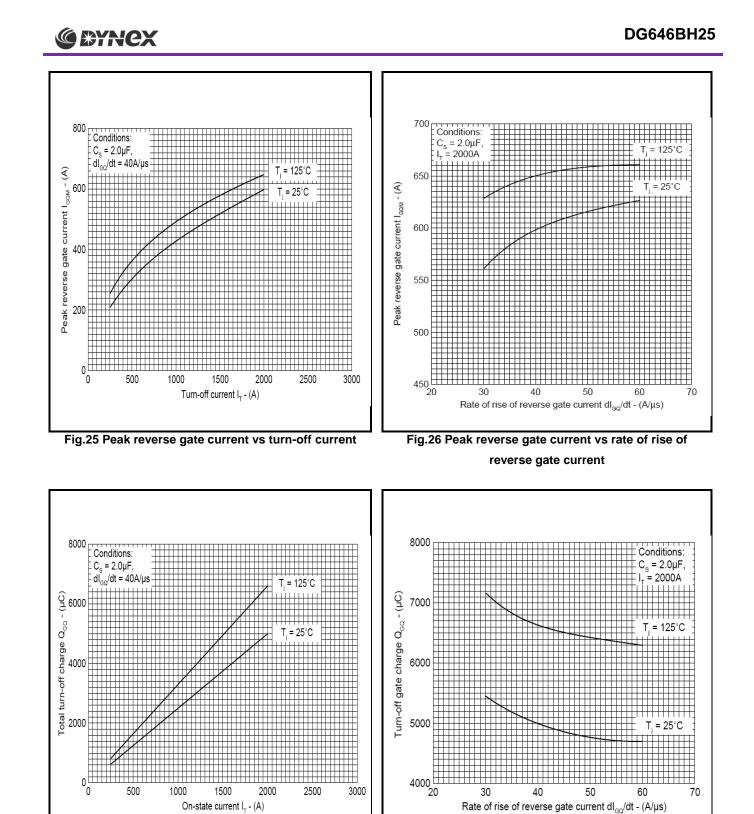


Fig.28 Turn-off gate charge vs rate of rise of reverse gate current

🌘 🕸 YN EX

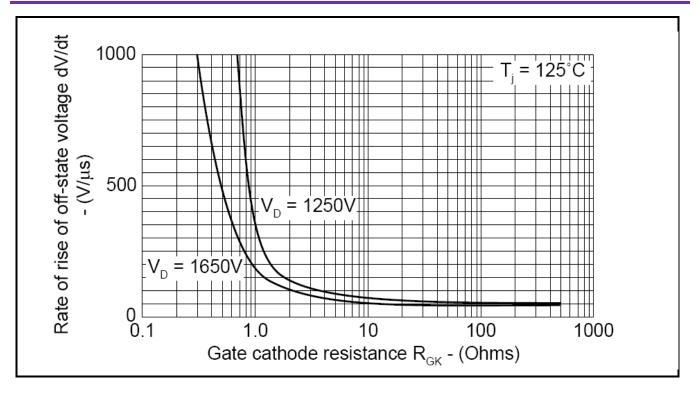
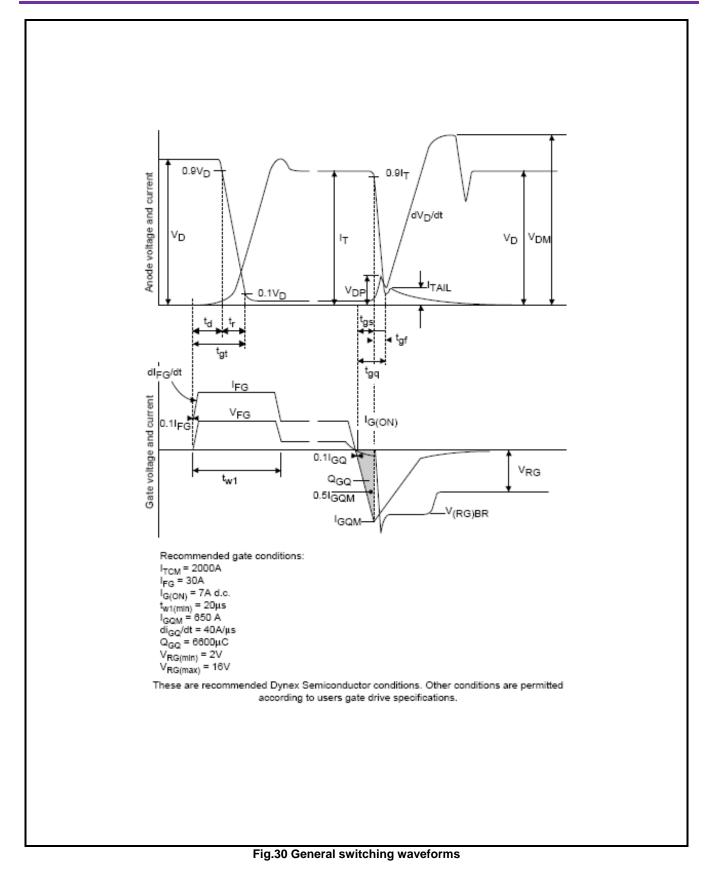



Fig.29 Rate of rise of off-state voltage vs gate cathode resistance

PACKAGE DETAILS

For further package information, please contact Customer Services. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

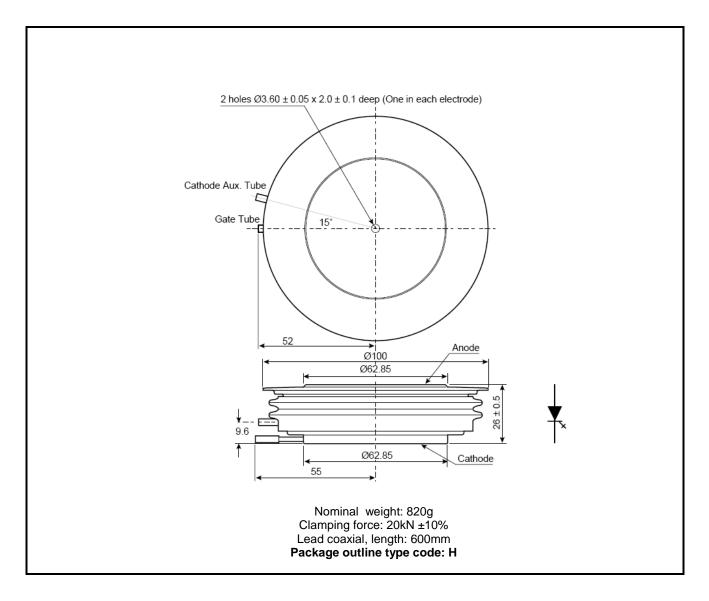


Fig.31 Package outline

IMPORTANT INFORMATION:

This publication is provided for information only and not for resale.

The products and information in this publication are intended for use by appropriately trained technical personnel.

Due to the diversity of product applications, the information contained herein is provided as a general guide only and does not constitute any guarantee of suitability for use in a specific application. The user must evaluate the suitability of the product and the completeness of the product data for the application. The user is responsible for product selection and ensuring all safety and any warning requirements are met. Should additional product information be needed please contact Customer Service.

Although we have endeavoured to carefully compile the information in this publication it may contain inaccuracies or typographical errors. The information is provided without any warranty or guarantee of any kind.

This publication is an uncontrolled document and is subject to change without notice. When referring to it please ensure that it is the most up to date version and has not been superseded.

The products are not intended for use in applications where a failure or malfunction may cause loss of life, injury or damage to property. The user must ensure that appropriate safety precautions are taken to prevent or mitigate the consequences of a product failure or malfunction.

The products must not be touched when operating because there is a danger of electrocution or severe burning. Always use protective safety equipment such as appropriate shields for the product and wear safety glasses. Even when disconnected any electric charge remaining in the product must be discharged and allowed to cool before safe handling using protective gloves.

Extended exposure to conditions outside the product ratings may affect reliability leading to premature product failure. Use outside the product ratings is likely to cause permanent damage to the product. In extreme conditions, as with all semiconductors, this may include potentially hazardous rupture, a large current to flow or high voltage arcing, resulting in fire or explosion. Appropriate application design and safety precautions should always be followed to protect persons and property.

Product Status & Product Ordering:

We annotate datasheets in the top right hand corner of the front page, to indicate product status if it is not yet fully approved for production. The annotations are as follows:-

Target Information:	This is the most tentative form of information and represents a very preliminary specification. No actual design work on the product has been started.
Preliminary Information:	The product design is complete and final characterisation for volume production is in progress. The datasheet represents the product as it is now understood but details may change.
No Annotation:	The product has been approved for production and unless otherwise notified by Dynex any product ordered will be supplied to the current version of the data sheet prevailing at the time of our order acknowledgement.

All products and materials are sold and services provided subject to Dynex's conditions of sale, which are available on request.

Any brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.

HEADQUARTERS OPERATIONS

DYNEX SEMICONDUCTOR LIMITED Doddington Road, Lincoln, Lincolnshire, LN6 3LF United Kingdom. Phone: +44 (0) 1522 500500 Fax: +44 (0) 1522 500550 Web: http://www.dynexsemi.com

CUSTOMER SERVICE

Phone: +44 (0) 1522 502753 / 502901 Fax: +44 (0) 1522 500020 e-mail: power_solutions@dynexsemi.com

© Dynex Semiconductor Ltd.

Technical Documentation - Not for resale.